B.Sc., DEGREE EXAMINATION - MATHEMATICS
 FIRST SEMESTER - NOVEMBER 2013

MT 1503 - ANALYTICAL GEOMETRY OF 2D, TRIG. \& MATRICES

Date : 14/11/2013
Dept. No. \square Max. : 100 Marks
Time : 1:00-4:00

$\underline{\text { PART - A }}$

Answer ALL questions:

1. Give the expansion of $\cos 6 \theta$.
2. Expand $\sin 5 \theta$ in terms of $\cos \theta$ and $\sin \theta$.
3. Give the formula for $\sinh (x+y)$.
4. Give the values of $\log (x+i y)$.
5. State Cayley Hamilton theorem.
6. What are characteristic roots and vectors of a matrix.
7. Find the vertex, focus and directrix of the parabola $y^{2}=8 x$.
8. Define conjugate diameters of an ellipse.
9. Define rectangular hyperbola.
10. Define polar equation of a conic.

PART - B

Answer any FIVE questions:
11. Prove that $32 \cos ^{6} \theta=\cos 6 \theta+6 \cos 4 \theta+15 \cos 2 \theta+10$.
12. If $\frac{\sin x}{x}=\frac{863}{864}$, find an approximate value of x.
13. Separate $\tanh (x+i y)$ into real and imaginary parts.
14. Find the value of $\log \left(\frac{1+\cos \theta+i \sin \theta}{\cos \theta-1+i \sin \theta}\right)$.
15. Determine the characteristic roots of the matrix $\left(\begin{array}{ccc}0 & 1 & 2 \\ 1 & 0 & -1 \\ 2 & -1 & 0 .\end{array}\right)$
16. Find the locus of poles of chords of the parabola which subtend a right angle at the vertex.
17. Prove that any two straight lines through the points of intersection of an ellipse with any circle make equal angles with the axes of the ellipse.
18. Show that the asymptotes of a rectangular hyperbola are at right angles.

PART - C

Answer any TWO questions:
19. a) Expand $\sin ^{3} \theta \cos ^{4} \theta$ in terms of sines of multiples of θ.
b) Show that $128 \sin ^{8} \theta=\cos 8 \theta-8 \cos 6 \theta+28 \cos 4 \theta-56 \cos 2 \theta+35$.
20. a) Express $\sinh ^{-1} x$ asa logarithmic function.
b) Prove that $\mathrm{i}^{\mathrm{i}}=\mathrm{e}^{-(4 \mathrm{n}+1) \pi / 2}$ where n is an integer.
21. Diagonalise $A=\left(\begin{array}{ccc}2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1\end{array}\right)$.
22. a) Find the polar of the point $\left(x_{1}, y_{1}\right)$ with respect to the parabola $y^{2}=4 a x$.
b) Show that the locus of a pole of any tangent to the ellipse with respect to the auxillary circle is a similar concentric ellipse whose major axis is at right angles to that of the original ellipse.

